EUCLID-BOOK XII

DAVIDE CRIPPA

1. ProprosiTIiON XII, 2

In book XII of the Elements, Euclid proves the following theorems:

e El. XII, 1. Similar polygons in circles are to one another as the squares from the
diameters.
e El. XII, 2. Circles are to each other as the squares of their respective diameters.

XII, 2 can be immediately derived from XII, 1 if we imagine that a circle is an infini-
tangular polygon. However, Euclid does not proceed in this way. Euclid’s proof of XII, 2 is
indirect: it starts from the assumption that the ratio ABCD : EFGH # Q(BD) : Q(HF),
and derives a contradiction.
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Fuclid’s indirect proof is also known as a proof by exhaustion, although the term “exhaus-
tion” refers to the technique employed in the proof, which consists of “filling up” the circles
with polygons. Euclid XII, 2 is a good example of a theorem rigorously proven according to
a “Euclidean’ ideal of rigour consisting in avoiding infinite or infinitesimal considerations.
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However, the price to pay for this rigorous proof, as the early moderns knew well, was a
certain prolixity and obscurity. As Tacquet noted in his Elementa Geometriae:

Demonstrationes adeo sunt prolixae, ut Tyrones in desperationem plerumque
conijciant

As said above, to prove proposition XII, 2, Euclid assumes that Q(BD) : Q(HF) #
ABCD : EFGH. From this, he infers that there exists a magnitude S, such that: Q(BD) :
Q(HF) = ABCD : S. Since S # EFGH, Euclid assumes that either S < EFGH, or
S > EGFH. In the rest of the proof, Euclid shows that a contradiction follows from either
case. Like other proofs in reductio style, the proof of XII, 2 rests on two assumptions:

e given three magnitudes, A, B, C, in which the ratio A : B exists (i.e. A and B are
homogeneous, according to Euclid, V, df. 4), there exists a fourth magnitude X,
such that A : B :: C': X (this is the assumption of the fourth proportional, which
can be considered a kind of continuity axiom).

e Given two homogeneous magnitudes A and B, either A < B,or A> B,or A=B
(this assumption ensures that homogeneous geometrical magnitudes are always
comparable, hence they form a complete order).

With Euclid, let us first consider the case where: S < FFGH. Let us inscribe a
square ¢(H F'), with diagonals HF, EG, in the circle EFGH. We will have that: ¢(HF) =
%Q(H F). Since the circle EFGH is included in the square Q(HF'), we will have that:
EFGH < Q(HF), and: 1EFGH < $Q(HF) = q(HF), This proves that the inscribed
square q(HF') is greater than half of the circle EFGH. The next step consists in con-
structing the series of triangles ENF, EMG ..., each obtained by halving arcs EF, FG,
..., as shown in figure.

For each triangle (e.g. ENF') it is possible to prove that it is greater than half of the
corresponding sector of the circle in which it is inscribed (e.g. the sector ENF'). The proof
can be give for just one case as follows:

1
triangle(ENF) = irect(EF)
1 1
sector(ENF) < rect(EF) — Esector(ENF) < irect(EF) = triangle(ENF)

1
isector(ENF) < triangle(ENF)

By continuing bisecting the arcs, we can construct more and more triangles, for which
we ca show that they are greater than half of the corresponding sectors using the same
proof.

At this point, Euclid can rely on X, 1 as a lemma:



Theorem 1 (Elements, X, 1). if we subtract from a given magnitude a part that is more
than half of the magnitude, and we do that at every step, after n-steps we will remain with
a magnitude as small as we please.

If the given magnitude is the circle EFGH, from which we subtract a series of polygons
as described above (e.g. the square q(HF') at step 1, and at each n + 1 step, 2" + 1
triangles constructed as explained above), then we fall into the case of X, 1. Each polygon
obtained at a given step n is always greater than half of the (remaining) circle. From this,
we conclude that a quantity ¢ can be obtained, after a certain number of steps, that is
smaller than the given quantity EFGH — S, i.e. we shall have: S < FFGH — a. By
construction, the magnitude EFGH — a is a polygons, because it is the figure obtained by
taken off 2 4 1 circular sectors from a given circle. Let us call this polygon Ps.

Let us assume that P is the polygon ENFMGLHK. A similar polygon ARDQCPBO
(we can call it P; for brevity) can be constructed in the circle ABC'D. We have, from XII,
1:

Q(BD): QHF) =Py : P,

From V, 11 we also have:

ABCD :S=P,: P

Using a property of proportion (permutation, Euclid V, 16) we conclude that: ABCD :
P1 =5 P2

Since P; < ABCD, because it is inscribed in that circle, it results that P, is smaller that
S. However, this is a contradiction, because we have claimed above that S < EFGH — a,
i.e. S < P,. Hence:

Q(BD): Q(HF) # ABCD : S

with S < EFGH. In the same way, we prove that: Q(HF) : Q(BD) # EFGH : S,
with S < ABCD.

In the second part of the proof, Euclid assumes that there exists a magnitude S, such
that S > FFGH and that: Q(BD) : Q(HF) = ABCD : S. From this proportion, it
follows: Q(HF) : Q(BD) : S : ABCD. Since S > EFGH, we have, assuming the 4th
proporitional, that S : ABCD = EFGH : T, where T is a magnitude homogeneous to
ABCD, and T < ABCD. As a consequence, Q(HF) : Q(BD) = EFGH : T. However,
we have proven above that Q(HF') : Q(BD) # EFGH : S, for a generic magnitude S with
S < ABCD, hence a contradiction results.

Since the proportion Q(BD) : Q(HF) = ABCD : S does not hold if S < EFGH and if
S > EFGH, it must hold in the case EFGH = S (by the assumption of complete order).
Hence Q(BD) : Q(HF) = ABCD : EFGH.



2. SOME EARLY MODERN ELABORATIONS

The process of “exhaustion” a figure by a sequence of inscribed polygons, implicit in
Euclid’s proof, became a fundamental technique that lay the groundwork of modern cal-
culus. Several commentators of the Elements focussed on Euclid XII, 2 as a key result of
the rigorous Euclidean way of handling infinitary processes.

2.1. Tacquet. A. Tacquet was a jesuit professor, and wrote in 1654 a version of the Ele-
ments adapted for students. This proposition was singled out as particularly complex and
hard to understand. For this reason, Tacquet sought for an easier way to prove it.

Tacquet adds to Euclid’s book XII the definition of a sequence of inscribed or circum-
scribed figures tending to a given figure:

Definition. Magnitudes, whether inscribed or circumscribed to a certain figure, be they
smaller or larger than the figure, are said to tend to the figure (in figuram desinere) if they
can eventually differ from it by a quantity lesser than any given one, no matter how small.

On this basis, Tacquet then proves the following porisma universale:

if the figures inscribed in two magnitudes A, and B, tend to them, have the same pro-
portion one to the other, then the figures A and B are also in the same proportion.

PROOF

We suppose that the figures inscribed in A and B are to the other in the same ratio
X : Z. Let us suppose that it is not the case for A and B, hence A : B # X : Z. Let
us suppose that A : B > X : Z. Hence there exists a quantity R, such that R < A, and:
R: B = X :Z. Since we assumed that the figures inscribed in A and B tend to A and
B, respectively, we shall have that there exist at least two figures, for instance, C' and F,
whose difference from A and B, respectively, is smaller than any given quantity. Let us
assume that it is smaller than the given quantity B — R. Hence A — C < B — R. This
inequality implies that C' > R, so that: C': B > R : B. However we also assumed that:

R:B=X:7
and, by hypothesis:

X:Z=C:F
since C' and F' are inscribed in A and B. It follows that the ratio C' : B is larger than

the ratio C': F', and that B > F. But F' is assumed to be inscribed in B, hence it cannot
be larger. From this contradiction, it follows that:



A:B=X:7Z
On the basis of this porisma universale, to prove XII, 2 it is enough to prove that the
polygons constructed by bisecting the arcs, as explained above, tend to the circles.

2.2. Newton. Tacquet’s general porisma can be compared to Newton’s lemma IV, Book
I, Principia:

Lemma 2 (Newton). If in two figures there should be inscribed (as above ) two series of
parallelograms, and if the number of both should be the same, and when the widths are
diminished indefinitely, the last ratios of parallelograms in one figure should be individually
the same as the parallelograms in the other figure; then the two figures are in the same
ratio to one another.

3. JAMES GREGORY

In his Vera Circuli et Hyperbolae Quadratura, published in 1667, Gregory developed a
theory of convergent series in order to solve the quadrature of the circle, the ellipse and the
hyperbola (i.e. compute their areas, or the area of a sector as a function of the inscribed
and circumscribed polygons). Gregory does not use Euclid XII, 2 but relies on X, 1 in
an ingenuous way to prove that a sequence of inscribed and circumscribed polygons tends
to a sector. Gregory’s treatment remains Euclidean (or Archimedean, as no indivisible or
infinitesimals are involved). We can say that Gregory pushes the Euclidean method to its
limits.

One remarkable aspect of Gregory’s treatise is the abstract definition of convergence,
which generalizes Tacquet’s concept of desinare as follows:

Definition 1 (series convergens). (VCHQ, df. 9, p. 10) Given two successions of quantities
{an} and {b,}, Gregory called “convergent series” a double sequence {ay,by} , if the
following conditions obtain (S and S’ are two finite compositions):

There is a composition S such that,
Vn, ant1 = S(an, by)
There is a composition S’ such that,
Vn, byt = S (an, bn)
and:
Vn | bng1 — aptr | <| b — ap |

We notice that convergece is a property of a double sequence of quantities, in which each
term is composed from the previous ones through a well define set of operations, which
Gregory calls compositio. These operations are, for instance, the usual ones of arithmetic.



We also notice that the above conditions do not imply that the series tends to 0, that is,
they don’t imply convergence in the modern sense.

Afterwards, Gregory establishes that the series of polygonal figures inscribed and cir-
cumscribed to a sector of a circle (resp. ellipse, hyperbola) not only form a convergent
series according to the definition above, but he also proves that the series of the differences
tends to 0.

To prove this results, Gregory proves that the differences between the successive terms
of the series {I,} and {C,}, as n increases, becomes smaller, according to the following
relation: Vn, (Cpi1 — Iny1) < %(Cn — I,,), in the case of the circle or the ellipse, and
Vn(Ips1 — Chi) < %(In — () in the case of the hyperbola.

Considering, for the sake of simplicity, only the case of the series approaching a sector
of the circle or of an ellipse (in the case of the hyperbola, the following inequalities must
be inverted), Gregory proceeds by giving a direct proof of the following inequality for the
first pair of in- and circumscribed polygons:

1
(1) Ci—1Ii < 5(00 —Ip)

He then generalizes this inequality to successive terms, on the strength of the recursive
construction of the in- and circumscribed polygons. For the details of Gregory’s proof,
see my book, p. 59ff. Here I will only stress that the reason why Gregory relies on the
inequality C1 — I < %(CO — Iy) can be understood if we refer to Euclid, X, 1 mentioned
above.

From Euclid’s proposition X, 1we infer that:

Theorem 3. If subtracting from a given magnitude M, a succession of quantities, such
that each remainder is smaller than half of the previous one, we can obtain a succession of
remainders that can be taken as small as we please.

Thus at step 1, we will have a remainder R; such that R; < %M , at step 2, a remained
Ry < (M —MM), ... at step n, we will have that R, < (M —M;—My—---—M,_;. This
situation applies to the case discussed by Gregory, as the differences C,, — I,, between the n-
th circumscribed and the inscribed polygons are less than half that the previous difference,
hence the sequence of these differences can be continued until we find a difference as small
as we please.

As a final result, Gregory proves that there exists a last term of the series, namely a
pair of polygons, let us call them Iy, Cy, such that Cy = Iy = 6 (0 is the area of the
circular sector under consideration). Gregory proceeds with a reductio argument, and
assumes: 6 — Iy = Z, where Z is an arbitrary quantity that differs from 0. Since the
series of polygons is convergent, there exists a pair (I, Cy,) such that C,, — I, < Z. Hence
Cn — I, < 0 — Iy. This inequality implies: I, — Iy > C,, — 0. But this is a contradiction
because the term C), — 6 is positive (C), is circumscribed to the sector #, hence larger than
it), while the term I,, — Iy is negative, since Iy is the last inscribed polygon, hence I,, < Iy,
Therefore we have: Cyp = Iy = 6.



